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Abstract. We study numerically the dependence of heat transport on the maximum velocity and shear rate
of physical circulating flows, which are prescribed to have the key characteristics of the large-scale mean
flow observed in turbulent convection. When the side-boundary thermal layer is thinner than the viscous
boundary layer, the Nusselt number (Nu), which measures the heat transport, scales with the normalized
shear rate to an exponent 1/3. On the other hand, when the side-boundary thermal layer is thicker, the
dependence of Nu on the Peclet number, which measures the maximum velocity, or the normalized shear
rate when the viscous boundary layer thickness is fixed, is generally not a power law. Scaling behavior is
obtained only in an asymptotic regime. The relevance of our results to the problem of heat transport in
turbulent convection is also discussed.

PACS. 47.27.-i Turbulent flows, convection, and heat transfer – 44.20.+b Boundary layer heat flow

1 Introduction

Turbulent Rayleigh-Bénard convection has been a system
of much research interest. The system consists of a closed
cell of fluid which is heated from below and cooled from
above. When the applied temperature difference is large
enough, the fluid moves and convection occurs. The flow
state is characterized by the geometry of the cell and two
dimensionless control parameters: the Rayleigh number
Ra, which measures how much the fluid is driven and the
Prandtl number Pr, which is the ratio of the diffusivities
of momentum and heat of the fluid. The two parameters
are defined by Ra = αg∆L3/(νκ), and Pr = ν/κ, where
∆ is the maintained temperature difference, L is the height
of the cell, g the acceleration due to gravity, and α, ν, and
κ are respectively the volume expansion coefficient, kine-
matic viscosity and thermal diffusivity of the fluid. When
Ra is sufficiently large, the convection becomes turbulent.

Besides the issue of the statistical characteristics of the
velocity and temperature fluctuations, it is of interest to
understand the heat transport by the fluid, which is an
overall response of the system. The heat transport is usu-
ally expressed as the dimensionless Nusselt number Nu,
which is the ratio of the measured heat flux to the heat
transported were there only conduction. Before the onset
of convection, heat is transported only by conduction and
Nu is identically equal to one. When convection occurs,
heat is more effectively transported by the fluid due to its
motion and Nu increases from 1. A major question is then
to understand how Nu depends on Ra and Pr.
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The work of Libchaber and coworkers on turbulent
convection in low temperature helium gas [1,2] showed
that Nu has a simple power-law dependence on Ra:

Nu ∼ Raβ (1)

and the exponent β is almost equal to 2/7, which is dif-
ferent from 1/3, the value that marginal stability argu-
ments [3] would give. This result led to the development
of several theories [2,4–6] which all give β = 2/7 but
were based on rather different physical assumptions. In
particular, the Chicago mixing-zone model [2] empha-
sizes the heat transport by the thermal plumes, the co-
herent structures observed in turbulent convection while
the theory by Shraiman and Siggia [5] focuses on the ef-
fect of the shear of the large-scale mean flow on the heat
transport (see e.g. Ref. [7] for a review). Later experi-
mental results appeared to further complicate the situ-
ation. Niemela et al. [8] reported a value of β close to
0.31 for measurements in low temperature helium gas
that cover a much larger range of Ra, from 106 to 1017.
Xu et al. [9] studied turbulent convection in acetone in
several experimental cells of different aspect ratios and
concluded that there is no significant range of Ra over
which the scaling behavior equation (1) holds. Further-
more for Ra ≥ 108, the dependence of Nu on Ra is con-
sistent with a combination of two power laws [10], which
is predicted by Grossmann and Lohse [11]. Recent ex-
perimental results on the Pr dependence of Nu [12,13]
are also consistent with an extension of the original the-
ory [14]. In Grossmann and Lohse’s theory [11,14], the
viscous and thermal dissipation were decomposed into
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their bulk and boundary-layer contributions, and ten
asymptotic regimes were obtained [14]. The physics be-
hind the dominance of the bulk or boundary-layer contri-
bution is, however, unclear.

Another interesting feature observed in turbulent con-
vection is the presence of a persistent large-scale mean
flow which spans the whole experimental cell [15]. The
maximum mean velocity of the flow was also found to
scale as Ra to about 1/2 [16]. The presence of a large-
scale flow naturally induces an interaction between the
top and bottom thermal boundary layers. Such an inter-
action was taken to be absent in the marginal stability
arguments. One obvious effect of the velocity field, which
satisfies the no-slip boundary condition, is that it pro-
duces a shear near the boundaries, which was first studied
in reference [5].

In convection, the equations of motion are:

∂u
∂t

+ u ·∇u = −∇p+ ν∇2u+ gαT ẑ (2a)

∂T
∂t

+ u ·∇T = κ∇2T (2b)

∇ · u = 0 (2c)

where u is the velocity field, p the pressure divided by
density and T the temperature field, while ẑ is the unit
vector in the vertical direction. The velocity and temper-
ature are thus coupled dynamically in a complicated fash-
ion and have to be solved together. Physically, the velocity
field is driven by the applied temperature difference. The
flow in turn determines the temperature profile, and thus
the heat transport, in a self-consistent manner.

To gain insights of the problem of heat transport in
turbulent convection, we have turned to the simpler prob-
lem: heat transport by prescribed velocity fields that have
features of the large-scale mean flow observed. That is,
we focus only on equations (2b) and (2c) with a given
steady velocity field u, which is chosen to have features of
the large-scale flow. It is known that the large-scale flow
has two dominant features: (i) it is a circulating flow that
spans the whole experimental cell and (ii) it generates a
shear near the boundaries. In an earlier paper, Ching and
Lo studied separately these two features and their effects
on the heat transport [17]. They found thatNu scales with
the Peclet number that measures the maximum velocity
to an exponent 1/2 for a purely circulating flow and scales
with the normalized shear rate to an exponent 1/3 for a
pure shear.

Pure circulating or pure shear flows are, however, not
physical fluid flows within a closed box. In this paper, we
continue along these lines of thought and study the heat
transport by physical velocity fields in a unit square cell
that have both the circulating and the shear-generating
features. We focus on the dependence of the heat trans-
port on the maximum velocity and the shear rate of the
flows. We first formulate our problem in Section 2. Then
we present our numerical results and discuss how these
results can be understood in Section 3. In Section 4, we
further discuss how these results are relevant to the under-
standing of heat transport in turbulent convection. Specif-
ically, our results suggest that whether the boundary layer

or the bulk dominates the thermal dissipation is physically
equivalent to whether the large-scale mean flow or the
fluctuating part of the velocity field dominates the heat
transport. Finally, we end the paper with a summary and
conclusions in Section 5.

2 The problem

We solve the steady-state advection-diffusion equation

u(x, y) ·∇T (x, y) = κ∇2T (x, y) (3)

for a prescribed incompressible velocity field u(x, y) in a
unit square cell: 0 ≤ x ≤ L and 0 ≤ y ≤ L. A temperature
difference of ∆ is applied across the y-direction while no
heat conduction is allowed across the x-direction. That is,
the temperature field T (x, y) satisfies the following bound-
ary conditions:

T (x, y = 0) = ∆; T (x, y = L) = 0 (4)
∂T

∂x
(x = 0, y) =

∂T

∂x
(x = L, y) = 0. (5)

For the velocity field, we take

ux(x, y) = f(x̃)f ′(ỹ) (6)
uy(x, y) = −f ′(x̃)f(ỹ) (7)

where f is some function of x̃ ≡ x/L or ỹ ≡ y/L and ′
is its derivative with respect to the argument. Thus, u is
incompressible and separable in x and y. To satisfy the
no-slip boundary condition, we require

f(0) = f(1) = f ′(0) = f ′(1) = 0. (8)

Moreover, for u to be a circulating flow, we require

f(x̃) = f(1− x̃) 0 ≤ x̃ ≤ 1 (9)

such that ux and uy are antisymmetric about y = L/2
and x = L/2 respectively. We have studied two forms
of f . The first form is algebraic. When f is algebraic,
equations (8) and (9) imply that f(x̃) = x̃2(x̃ − 1)2h(x̃)
with h(x̃) = h(1− x̃). Thus we choose

f(x̃) = x̃2(x̃− 1)2(ax̃+ b)[a(1− x̃) + b] (10)

where a and b are positive constants. Equation (10) is the
simplest algebraic form that allows us to change both the
circulating strength and the shear rate of the flow (see
below). The other is an exponential form of f :

f(x̃) = c
(
1− e−kx̃

)2 [
1− e−k(1−x̃)

]2
(11)

where c and k are positive constants. For k � 1, the ex-
ponential form reduces to the algebraic form with a = 0
and b2 = ck4. When k is large, the velocity decays expo-
nentially towards the center of the cell. We show the two
velocity fields in Figure 1.
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Fig. 1. (a) The velocity field with an algebraic f given by equa-
tion (10) with a = b = 1. The size of the arrow indicates the
relative magnitude of the velocity. The contour C that encloses
the lower half of the unit square cell is also shown. (b) The ve-
locity field with an exponential f given by equation (11) with
c = 1 and k = 9.

We characterize the velocity field by its maximum ve-
locity u0 and shear rate γ, which are defined by

u0 ≡ max
0≤y≤L2

ux

(
x =

L

2
, y

)
= max

0≤x≤L2
−uy

(
x, y =

L

2

)
(12)

γ ≡ ∂ux
∂y

(
x =

L

2
, y

) ∣∣∣∣
y=0

= −∂uy
∂x

(
x, y =

L

2

) ∣∣∣∣
x=0

.

(13)

By varying the parameters a and b or c and k, we can vary
u0 and γ of the velocity fields.

From the solved temperature field, we can calculate
the heat transport, which is the heat conducted across the
boundary y = 0. Nu is therefore the ratio of the average of
the magnitude of the vertical temperature gradient over
the boundary y = 0 to ∆/L:

Nu =

〈
−∂T
∂y

∣∣∣∣
y=0

〉
∆

L

· (14)

Here 〈. . . 〉 is the average over x from 0 to L. Our goal
is to study the dependence of Nu on the Peclet number
Pe ≡ u0L/κ and the normalized shear rate γ̃ ≡ γL2/κ.

3 Results and discussions

We numerically solve T (x, y) for the two forms of f . In
Figure 2, we show the vertical and horizontal temperature
profiles T (x = L/2, y) and T (L − x, y = L/2). As was
reported in turbulent convection experiments, the applied
temperature difference concentrates in two narrow regions
near the ‘bottom’ and ‘top’ boundaries y = 0 and y = L
respectively. Interestingly, the circulation also induces a
temperature difference between the two ‘side’ boundaries
x = 0 and x = L. For flows that are anticlockwise (see
Fig. 1), the side x = 0 is colder than the side x = L. The
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Fig. 2. Typical vertical and horizontal temperature profiles
T (x = L/2, y)/∆ (solid) and T (L− x, y = L/2)/∆ (dotted) as
a function of y/L and x/L respectively.
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Fig. 3. The dependence of α on γ̃ for various values of λv:
λv/L = 0.0167 (circles), λv/L = 0.021 (triangles), λv/L =
0.028 (stars), λv/L = 0.070 (squares), λv/L = 0.088 (plusses),
λv/L = 0.096 (diamonds), λv/L = 0.108 (crosses), and λv/L =
0.130 (inverted triangles).

horizontal temperature profile T (L−x, y = L/2) resembles
the vertical one T (x = L/2, y) in that it is almost constant
= ∆/2 except for two small regions near the sides. In these
two small regions, it is approximately linear in x except
at the boundaries where the horizontal gradient vanishes.
Hence, we approximate T (x, y = L/2) by

T (x, y = L/2)
∆/2

≈


1− α

(
1− x

`

)
0 ≤ x ≤ `

1 ` < x < L− `

1 + α
(
1− L−x

`

)
L− ` ≤ x ≤ L

(15)

where α is about 0.5 as shown in Figure 3.
Thus, there are also two thermal boundary layers of

thickness ` at the ‘side’ boundaries. Furthermore, we find
that Nu is given by L/` up to a factor d:

Nu = d
L

`
(16)
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Fig. 4. The dependence of d on γ̃ for various values of λv (same
symbols as in Fig. 3).
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Fig. 5. The dependence of Nu on γ̃ when ` < λv for various
values of λv (same symbols as in Fig. 3). In the inset, Nuγ̃−1/3

is plotted versus γ̃.

where d is weakly dependent on γ̃ and approaches 0.8 as
the viscous boundary layer thickness λv ≡ u0/γ increases
to 0.13 L as shown in Figure 4. Defining λT = L/(2Nu) to
be the average thickness of the thermal boundary layer at
the top and bottom boundaries, we see that the ` = 2dλT .
Thus, the side-wall thermal boundary layers are thicker
than the top and bottom thermal boundary layers.

We find that the functional form of Nu(Pe, γ̃) depends
crucially on the relative sizes of λv and `. For ` < λv, Nu
scales with the shear rate:

Nu = Aγ̃1/3 for ` < λv (17)

and the coefficient A approaches 0.36 as λv increases to
0.13 L as shown in Figure 5. For λv < `, we see in Figure 6
that the dependence of Nu on Pe or γ̃ for fixed λv is not
a power law. For a short range of Pe or γ̃, the dependence
might be described by an effective power law but the value
of the effective exponent would depend on the range of Pe
or γ̃ fitted.
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Fig. 6. The dependence of Nu on γ̃ when L/2 � ` > λv
for various values of λv (same symbols as in Fig. 3). We also
compare our numerical results to equation (24) with λv/L =
1/60, α = 0.6 and d = 0.9 (solid line), and good agreement
is found for ` < 0.1L (data points on the right of the dashed
line).

We shall understand these results in the following.
Since the velocity field is incompressible, equation (3) im-
plies ∫

C

(uT − κ∇T ) · n̂dl = 0 (18)

for any closed curve C in the two-dimensional domain
where n̂ is an outward normal. Since we find that |∂T/∂y|
almost vanishes along y = L/2, we choose C to enclose
the lower half of the unit cell (see Fig. 1a). Together with
equation (5) and the no-slip boundary condition, equa-
tion (18) then implies that

Nu ≈ L

κ∆

〈
uy

(
x, y =

L

2

)
T

(
x, y =

L

2

)〉
· (19)

Thus, we can estimate Nu by the heat transported across
y = L/2. Using the antisymmetry of uy about x = L/2
and equation (15), we get〈
uy

(
x, y =

L

2

)
T

(
x, y =

L

2

)〉
=

2
L

∫ `

0

uy

(
x, y =

L

2

)[
T

(
x, y =

L

2

)
− ∆

2

]
dx

≈ −α∆
L

∫ `

0

(
1− x

`

)
uy

(
x, y =

L

2

)
dx. (20)

In the derivation of equation (20), we have assumed that
the parameters of the velocity field are chosen such that
` < L/2 as in physical situations. The heat transported
across y = L/2 is, therefore, contributed mainly by two
‘jets’ of colder and hotter fluids moving down and up re-
spectively along the two boundaries x = 0 and x = L.

Using equation (13), we approximate uy by a linear
function in x for x < λv:

uy

(
x,
L

2

)
= −γx for x < λv. (21)
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Fig. 7. Comparison of the estimated values of the coefficient
(αd2/6)1/3 (circles) with the computed values of A (squares).

Hence, equations (16, 19) and (20) give

Nu ≈
(
αd2

6

)1/3

γ̃1/3 for ` < λv. (22)

In Figure 7, we compare our estimated values of the coef-
ficient (αd2/6)1/3 with the computed values of A. It can
be seen that the two values agree within an error of 7%.
Moreover, the agreement is better for larger λv, as ex-
pected since the linear approximation equation (21) works
better for 0 < x ≤ ` for larger λv.

For ` > λv, we need uy beyond the region where a
linear approximation holds. As a first approximation, we
take

−uy
(
x, y =

L

2

)
≈
{
γx x < λv

u0 λv ≤ x ≤ `.
(23)

That is, we approximate the large-scale flow by a shear
near the boundaries then followed by a band of circula-
tion at the maximum velocity. As uy has to decay to zero
towards the center of the cell, we expect the approxima-
tion equation (23) to work only for λv < `� L/2.

Using equations (19, 20) and (23), we get a quadratic
equation for Nu. Solving which gives

Nu =

√
2αdPe− (α2/12)Pe4γ̃−2 − (α/2)Pe2γ̃−1

2
(
1− α

6dPe
3γ̃−2

) (24)

for L/2 � ` > λv. Thus, Nu does not have a power-law
dependence on Pe nor γ̃. Physically, this is because we
generally cannot neglect the effect of the shear even when
the edge of the side-wall thermal boundary layer is located
at the band of maximum velocity of the large-scale flow. It
is only in the limit Pe3/2/γ̃ � 1 that Nu ∼ Pe1/2. Away
from this asymptotic regime, Nu might be represented by
an effective power law on Pe or γ̃ for fixed λv but the
value of the effective exponent would depend on the range
of Pe or γ̃ fitted. In Figure 6, we compare the numerical
results to equation (24) with λv/L = 1/60, α = 0.6 and

d = 0.9. The agreement is not too bad for λv < ` < 0.1L
given that our approximation of uy being constant beyond
the shear layer is rather crude.

4 Relevance to turbulent convection

In turbulent convection, the heat transport is due both
to the large-scale mean flow and the fluctuating part of
the velocity field. Our present work provides insights only
to the heat transport by the large-scale mean flow. It is
illuminating to see what results would be inferred if we
neglect the effect of the fluctuating part of the velocity
field.

Depending on the type of the viscous boundary layer,
the strength and the shear rate would be related to each
other. For example, if we follow Grossmann and Lohse to
assume that viscous boundary layer is of Blasius type [18]:
λv/L ∼

√
Pe/Pr for moderate values of Pr [11] and that

λv ∼ L for very large values of Pr [14], then

γ̃ ∼
{
Pe3/2Pr−1/2 moderate Pr

Pe very large Pr.
(25)

Our results, equations (22) and (24), would thus give Nu
as a function of Pe and Pr:

Nu ≈


(
αd2

6

)1/3

Pe1/2Pr−1/6 moderate Pr(
αd2

6

)1/3

Pe1/3 very large Pr
(26)

for ` < λv and

Nu ≈ g(Pr)Pe1/2 (27)

for L/2� ` > λv with

g(Pr) =

√
2αd− α2Pr/12− αPr1/2/2

2[1− αPr/(6d)]
· (28)

We emphasize that the non-power-law dependence on Pr
for ` > λv echoes that the effect of the shear cannot gener-
ally be neglected even when the edge of the side-wall ther-
mal boundary layer is located at the band of the maximum
velocity of the large-scale flow.

Next, we make use of a rigorous relation between the
viscous dissipation and Nu and Ra, which is derivable
from equation (2), the complete equations of motion of
the full convection problem [5,7]:

〈〈[∂iuj(x, t)]2〉〉 =
κ2

L4
(Nu− 1)Ra (29)

where 〈〈. . . 〉〉 is an average over space x and time t. Ne-
glecting the contribution from the fluctuating part of the
velocity field to the viscous dissipation, we get

γ̃P e ∼ NuRa (30)
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for Nu � 1. Using equations (25, 26, 27) and (30), we
finally get

Nu ∼ Pr−1/12Ra1/4, Pe ∼ Pr1/6Ra1/2 (31)

Nu ∼ Ra1/5, Pe ∼ Ra3/5 (32)

for ` < λv respectively for moderate and very large values
of Pr, and

Nu ∼ g(Pr)5/4Pr1/8Ra1/4

Pe ∼ g(Pr)1/2Pr1/4Ra1/2 (33)

for L/2� ` > λv. The results equations (31, 32), and (33),
except for the non-power-law dependence on Pr in equa-
tion (33), resemble those obtained by Grossmann and
Lohse [14], respectively for regimes Il, I<∞, and Iu, in which
they took the boundary layer to dominate both the vis-
cous and thermal dissipation.

5 Summary and conclusions

In this paper, we have studied the heat transport by phys-
ical fluid flows whose velocity fields are prescribed to have
both the two key characteristics of the large-scale mean
flow observed in turbulent convection. The velocity fields
that we have chosen are separable and incompressible cir-
culating flows in a unit square cell. Satisfying the no-
slip boundary condition, they also generate a shear near
the boundaries. Overall, they are approximately a shear
near the boundaries, almost constant with the maximum
strength of circulation for a finite band, and then a de-
cay towards the center of the cell. We focus on the func-
tional dependence of Nu on Pe measuring the maximums
strength of circulation and the normalized shear rate γ̃
that characterize the velocity fields.

We have shown that Nu can be estimated by the heat
transported across the mid-height of the unit square cell,
which is in turn contributed mainly by two jets of hotter
and colder fluids moving up and down the two sides. These
two jets are confined to two narrow regions. That is, the
velocity field also induces two thermal boundary layers at
the side boundaries. These side-boundary thermal layers
are thicker than those at the top and bottom boundaries.
It is then clear that the functional form of Nu(Pe,γ̃) de-
pends crucially on the relative sizes of the viscous bound-
ary layer thickness λv and the thickness of the thermal
boundary layers at the side boundaries `. When ` < λv,
that is, the edge of the side-wall thermal boundary layer
falls within the shear region of the large-scale flow, Nu
scales with γ̃ to 1/3 and is very weakly dependent on λv
or Pe. When ` > λv and the edge of the side-wall ther-
mal boundary layer falls within the band of circulation
with maximum strength, there is still contribution to the
heat transport by the shear and Nu depends on both Pe
and γ̃. The dependence is generally not a power law and
scaling behavior is obtained only in the asymptotic regime
Pe3/2/γ̃ � 1.

We have further discussed how our results are relevant
to the problem of heat transport in turbulent convection.
In turbulent convection, the heat transport is due both
to the large-scale mean flow and the fluctuating part of
the velocity field. Neglecting the effect of the fluctuating
part of the velocity field, our results lead to results re-
sembling those obtained by Grossmann and Lohse [11,14]
when they took the boundary layer to dominate both the
viscous and thermal dissipation. It is not surprising that
the boundary layer dominating the viscous dissipation is
the same as the large-scale mean flow dominating the vis-
cous dissipation since the gradient of the large-scale mean
flow, which contributes to the viscous dissipation, con-
centrates in the boundary. Our finding thus suggests that
whether the boundary layer or the bulk dominates the
thermal dissipation is physically equivalent to whether the
large-scale mean flow or the fluctuating part of the veloc-
ity field dominates the heat transport.
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also derive equation (32) for very large Pr and thank P.T.
Leung for discussions. This work is supported by a grant from
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (RGC Ref. No. CUHK 4119/98P).
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